By Topic

Fast and Message-Efficient Global Snapshot Algorithms for Large-Scale Distributed Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kshemkalyani, A.D. ; Comput. Sci. Dept., Univ. of Illinois at Chicago, Chicago, IL, USA

Large-scale distributed systems such as supercomputers and peer-to-peer systems typically have a fully connected logical topology over a large number of processors. Existing snapshot algorithms in such systems have high response time and/or require a large number of messages, typically O(n2), where n is the number of processes. In this paper, we present a suite of two algorithms: simple_tree, and hypercube, that are both fast and require a small number of messages. This makes the algorithms highly scalable. Simple_tree requires O(n) messages and has O(log n) response time. Hypercube requires O(n log n) messages and has O(log n) response time, in addition to having the property that the roles of all the processes are symmetrical. Process symmetry implies greater potential for balanced workload and congestion-freedom. All the algorithms assume non-FIFO channels.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 9 )