By Topic

An Algorithm for Beam Propagation Method in Matrix Form

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin-Sung Hsiao ; Dept. of Photonics & Commun. Eng., Asia Univ., Taichung, Taiwan ; Likarn Wang ; Y. J. Chiang

A new and efficient method for waveguide field calculation is proposed. In the proposed Fourier cosine beam propagation method, both dispersion and waveguide effects for each propagation interval are treated in a matrix form. Such a calculation method converts the conventional point-by-point analysis skill into a matrix-based one. By using the matrix method, the computing time required for calculating the field evolution is much less than that required by using the commonly used finite-difference beam propagation method. Two y-branches with, respectively, a rib-type and a channel-type cross sections are tested. The numerical results demonstrate the efficiency of the proposed method.

Published in:

IEEE Journal of Quantum Electronics  (Volume:46 ,  Issue: 3 )