By Topic

High Peak Power, Passively Q -switched Microlaser for Ignition of Engines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tsunekane, M. ; Japan Sci. & Technol. Agency (JST), Nagoya, Japan ; Inohara, T. ; Ando, A. ; Kido, N.
more authors

The compact (electric spark plug size), diode-pumped, passively Q-switched Nd:YAG/Cr4+:YAG microlaser was developed for ignition of engines. Output energy of 2.7 mJ per pulse and 11.7 mJ per four-pulse train with a pulsewidth of 600 ps and an M 2 value of 1.2 were obtained at a pump duration of 500 ¿s. The optical-to-optical conversion efficiency was 19%. Brightness of the microlaser was calculated as 0.3 PW/ sr-cm2 and optical power intensity was calculated as 5 TW/cm2 at the focal point of ignition. The enhanced combustion by the microlaser ignition was successfully demonstrated in a constant-volume chamber at room temperature and atmospheric pressure. The cross section area of a flame kernel generated by laser ignition is 3 times larger than that by a conventional spark plug at 6 ms after ignition in a stoichiometric mixture (A/F 15.2) of C 3H 8/air, even though ignition energy of the laser is 1/3 of that of the spark plug. Hundred percent ignition was successfully demonstrated in a lean mixture of A/F 17.2 by laser ignition, where electric spark plug ignition failed.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 2 )