By Topic

Microorifice-Based High-Yield Cell Fusion on Microfluidic Chip: Electrofusion of Selected Pairs and Fusant Viability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Gel, M. ; Dept. of Mech. Eng., Univ. of Tokyo, Tokyo, Japan ; Suzuki, S. ; Kimura, Y. ; Kurosawa, O.
more authors

Microorifice-based fusion makes use of electric field constriction to assure high-yield one-to-one fusion of selected cell pairs. The aim of this paper is to verify feasibility of high-yield cell fusion on a microfluidic chip. This paper also examines viability of the fusant created on the chip. We fabricated a microfluidic chip to fuse selected cell pairs and to study postfusion behavior. We used a self-forming meniscus-based fabrication process to create microorifice with a diameter of 2-10 ¿m on the vertical walls in a microfluidic channel. When 1 MHz was applied to electrodes located on both sides of the microorifice, dielectrophoretic force attracted the cells toward microorifice to form a cell pair. Once the cells get into contact, fusion pulse was applied. Real time imaging of cells during fusion and cytoplasmic dye transfer between cells indicated success of cell fusion. We found that when high frequency voltage for dielectrophoresis was swept from 1 MHz to 10 kHz in 100 ¿s, cell fusion was initiated. The effective electric field strength was 0.1-0.2 kV/cm. We analyzed viability by imaging fusant going into cell division phase after 48 h of incubation. We conclude that fabricated microfluidic chip is suitable for high-yield one-to-one fusion and creation of viable fusants. This technology should be a useful tool to study fusion phenomena and viability of fusants, as it allows imaging of the cells during and after the fusion.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:8 ,  Issue: 4 )