By Topic

Coclustering for Cross-Subject Fiber Tract Analysis Through Diffusion Tensor Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cui Lin ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI, USA ; Darshan Pai ; Shiyong Lu ; Muzik, O.
more authors

One of the fundamental goals of computational neuroscience is the study of anatomical features that reflect the functional organization of the brain. The study of physical associations between neuronal structures and the examination of brain activity in vivo have given rise to the concept of anatomical and functional connectivity, which has been invaluable for our understanding of brain mechanisms and their plasticity during development. However, at present, there is no robust and accurate computational framework for the quantitative assessment of cortical connectivity patterns. In this paper, we present a quantitative analysis and modeling tool that is able to characterize anatomical connectivity patterns based on a newly developed coclustering algorithm, termed the business model-based coclustering algorithm (BCA). We apply BCA to diffusion tensor imaging (DTI) data in order to provide an automated and reproducible assessment of the connectivity patterns between different cortical areas in human brains. BCA not only partitions the cortical mantel into well-defined clusters, but also maximizes the connectivity strength between these clusters. Moreover, BCA is computationally robust and allows both outlier detection as well as parameter-independent determination of the number of clusters. Our coclustering results have showed good performance of BCA in identifying major white matter fiber bundles in human brains and facilitate the detection of abnormal connectivity patterns in patients suffering from various neurological diseases.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 2 )