By Topic

Toward a Better Modeling of Surface Emissivity to Improve AMSU Data Assimilation Over Antarctica

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stephanie Guedj ; National Centre for Meteorological Research (CNRM)/GAMEMétéo-France, Toulouse, France ; Fatima Karbou ; Florence Rabier ; Aurelie Bouchard

This work is in direct line with the Concordiasi international project. It aims to better constrain atmospheric analyses by improving the assimilation of low-level Advanced Microwave Sounding Unit (AMSU)-A and AMSU-B microwave observations over Antarctica. So far, a very small amount of available AMSU observations is effectively assimilated over Antarctica. To assimilate more observations, different issues have to be dealt with. In this work, the surface emissivity issue over Antarctica is examined. In a first step, a thorough review of the use of a specular assumption to calculate emissivity from AMSU-A measurements has been undertaken. The effect of five different assumptions about the surface on retrieved AMSU emissivities has then been evaluated using a one-year database: specular, Lambertian, and three intermediate assumptions. Simulations of brightness temperatures at AMSU sounding frequencies have been produced using a radiative transfer model. The emissivities obtained using the five assumptions have been found very useful in improving these simulations. The most successful schemes are found to be the Lambertian scheme during the winter season and a specular or an intermediate scheme (50% specular, 50% Lambertian) during Antarctica's short summer.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 4 )