By Topic

Provably convergent structure and motion estimation for perspective systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heyden, A. ; Centre for Math. Sci., Lund Univ., Lund, Sweden ; Dahl, O.

Estimation of structure and motion in computer vision systems can be performed using a dynamic systems approach, where states and parameters in a perspective system are observed. This paper presents a new approach to the structure estimation problem, where the estimation of the 3D-positions of feature points on a moving object is reformulated as a parameter estimation problem. For each feature point, a constant parameter is estimated, from which it is possible to calculate the time-varying 3D-position. The estimation method is extended to the estimation of motion, in the form of angular velocity estimation. The combined structure and angular velocity observer is shown stable using Lyapunov theory and persistency of excitation based arguments. The estimation method is illustrated with simulation examples, demonstrating the estimation convergence.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009