By Topic

A predictive control method for nonlinear parabolic PDE systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Armaou, A. ; Dept. of Chem. Eng., Pennsylvania State Univ., University Park, PA, USA

The problem of receding horizon control for a class of nonlinear distributed processes is investigated. The main focus of the manuscript lies in the development of a computationally efficient method to identify the optimal control action with respect to predefined performance criteria. An optimal control problem is formulated and is solved using standard, gradient-based, search algorithms. Employing nonlinear transformations and assuming piece-wise constant control action, the dynamic optimization problem is reformulated as a nonlinear optimization one with analytically computed sensitivities. The proposed method lies at the interface between collocation and shooting methods, since the distributed states are discretized explicitly in space and time and their sensitivity to the control action is analytically computed, reminiscent of collocation methods, while the states now enter the optimization problem explicitly as a nonlinear function of the control action and are eliminated from the equality constraints, thus reducing the number variables, evocative of shooting methods.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009