Cart (Loading....) | Create Account
Close category search window
 

ILC applied to a flexible two-link robot model using sensor-fusion-based estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wallen, J. ; Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden ; Gunnarsson, S. ; Henriksson, R. ; Moberg, S.
more authors

Estimates from an extended Kalman filter (EKF) is used in an iterative learning control (ILC) algorithm applied to a realistic two-link robot model with flexible joints. The angles seen from the arm side of the joints (arm angles) are estimated by an EKF in two ways: 1) using measurements of angles seen from the motor side of the joints (motor angles), which normally are the only measurements available in commercial industrial robot systems, 2) using both motor-angle and tool-acceleration measurements. The estimates are then used in an ILC algorithm. The results show that the actual arm angles are clearly improved compared to when only motor angles are used in the ILC update, even though model errors are introduced.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.