By Topic

Solving large-scale linear circuit problems via convex optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lavaei, J. ; Dept. of Control & Dynamical Syst., California Inst. of Technol., Pasadena, CA, USA ; Babakhani, A. ; Hajimiri, A. ; Doyle, J.C.

A broad class of problems in circuits, electromagnetics, and optics can be expressed as finding some parameters of a linear system with a specific type. This paper is concerned with studying this type of circuit using the available control techniques. It is shown that the underlying problem can be recast as a rank minimization problem that is NP-hard in general. In order to circumvent this difficulty, the circuit problem is slightly modified so that the resulting optimization becomes convex. This interesting result is achieved at the cost of complicating the structure of the circuit, which introduces a trade-off between the design simplicity and the implementation complexity. When it is strictly required to solve the original circuit problem, the elegant structure of the proposed rank minimization problem allows for employing a celebrated heuristic method to solve it efficiently.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009