Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

A soft-error-immune 0.9-ns 1.15-Mb ECL-CMOS SRAM with 30-ps 120 k logic gates and on-chip test circuitry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Higeta, K. ; Device Dev. Center, Hitachi Ltd., Tokyo, Japan ; Usami, M. ; Ohayashi, M. ; Fujimura, Y.
more authors

A soft-error-immune, 0.9-ns address access time, 2.0-ns read/write cycle time, 1.15-Mb emitter coupled logic (ECL)-CMOS SRAM with 30-ps 120 k ECL and CMOS logic gates has been developed using 0.3-μm BiCMOS technology. Four key developments ensuring good testability, reliability, and stability are on-chip test circuitry for precise measurement of access time and for multibit parallel testing, a memory-cell test technique for an ECL-CMOS SRAM, a highly stable current source with a simple design using a current mirror, and a soft-error-immune memory cell using a silicon-on-insulator (SOI) wafer. These techniques will be especially useful for making the ultrahigh-speed, high-density SRAM's used as cache and control storages in mainframe computers

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:31 ,  Issue: 10 )