By Topic

Multi-UAV path planning in obstacle rich environments using Rapidly-exploring Random Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mangal Kothari ; Control Research Group, Department of Engineering, University of Leicester, United Kingdom, LE1 7RH ; Ian Postlethwaite ; Da-Wei Gu

This paper presents path planning algorithms using Rapidly-exploring Random Trees (RRTs) to generate paths for multiple unmanned air vehicles (UAVs) in real time, from given starting locations to goal locations in the presence of static, pop-up and dynamic obstacles. Generating non-conflicting paths in obstacle rich environments for a group of UAVs within a given short time window is a challenging task. The difficulty further increases because the turn radius constraints of the UAVs have to be comparable with the corridors where they intend to fly. Hence we first generate a path quickly using RRT by taking the kinematic constraints of the UAVs into account. Then in order to generate a low cost path we develop an anytime algorithm that yields paths whose quality improves as flight proceeds. When the UAV detects a dynamic obstacle, the path planner avoids it based on a set of criteria. In order to track generated paths, a guidance law based on pursuit and line-of-sight is developed. Simulation studies are carried out to show the performance of the proposed algorithm.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009