Cart (Loading....) | Create Account
Close category search window

On stability of linear switched differential algebraic equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liberzon, D. ; Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Trenn, S.

This paper studies linear switched differential algebraic equations (DAEs), i.e., systems defined by a finite family of linear DAE subsystems and a switching signal that governs the switching between them. We show by examples that switching between stable subsystems may lead to instability, and that the presence of algebraic constraints leads to a larger variety of possible instability mechanisms compared to those observed in switched systems described by ordinary differential equations (ODEs). We prove two sufficient conditions for stability of switched DAEs based on the existence of suitable Lyapunov functions. The first result states that a common Lyapunov function guarantees stability under arbitrary switching when an additional condition involving consistency projectors holds (this extra condition is not needed when there are no jumps, as in the case of switched ODEs). The second result shows that stability is preserved under switching with sufficiently large dwell time.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.