By Topic

Quantized consensus via adaptive stochastic gossip algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lavaei, J. ; Dept. of Control & Dynamical Syst., California Inst. of Technol., Pasadena, CA, USA ; Murray, R.M.

This paper is concerned with the distributed averaging problem over a given undirected graph. To enable every vertex to compute the average of the initial numbers sitting on the vertices of the graph, the policy is to pick an edge at random and update the values on its ending vertices based on some rules, but only in terms of the quantized data being exchanged between them. Our recent paper showed that the quantized consensus is reached under a simple updating protocol which deploys a fixed tuning factor. The current paper allows the tuning factor to be time-dependent in order to achieve two goals. First, this makes it possible to study the numerical stability of the protocol with a fixed tuning factor under a small perturbation of this parameter. Furthermore, exploiting a time-varying tuning factor facilitates the implementation of the consensus protocol and pushes the steady state of the system towards an equilibrium point, as opposed to making it oscillatory. The current paper is an important extension of our recent work, which generalizes a finite-dimensional problem to an infinite-dimensional one that is more challenging in nature.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009