By Topic

On feedback stabilisation of switched discrete-time systems via Lie-algebraic techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haimovich, H. ; Dept. de Control, Univ. Nac. de Rosario, Rosario, Argentina ; Braslavsky, J.H. ; Felicioni, F.

This paper studies the stabilisation of switched discrete-time linear control systems under arbitrary switching. A sufficient condition for the uniform global exponential stability (UGES) of such systems is the existence of a common quadratic Lyapunov function (CQLF) for the component subsystems. The existence of such CQLF can be ensured using Lie-algebraic techniques by the existence of a nonsingular similarity transformation that simultaneously triangularises the closed-loop evolution maps of the component subsystems. The present work formulates a Lie-algebraic feedback design problem in terms of invariant subspaces and proposes an iterative algorithm that seeks a set of feedback maps that guarantee the existence of a CQLF, and thus UGES of the switched feedback system. The main contribution of the paper is to show that this algorithm will find the required feedback maps if and only if the Lie-algebraic problem has a solution.

Published in:

Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on

Date of Conference:

15-18 Dec. 2009