Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A study of the handset antenna and human body interaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Okoniewski, M. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada ; Stuchly, M.A.

The antenna radiation pattern and other characteristics are significantly altered by the presence of the human body. This interaction as well as the resultant deposition of microwave power in the body (specific absorption rate-SAR) are of particular interest for cellular telephones and similar communication devices. This paper builds on and extends the previous analyses of parameters that influence the antenna-user interaction. Computer tomography (CT) and magnetic resonance imaging (MRI)-derived, high-resolution models of the human head are used. The numerical analysis is performed with the finite-difference time-domain (FDTD) method. The specific findings are: 1) a box model of a human head provides grossly distorted and unreliable results for the antenna radiation pattern; 2) a spherical model of the human head provides results that are relatively close to those obtained with a relatively simple, but more realistic, head model; 3) the SAR values obtained with spherical or simplified head models, that do not include the ear, are greater than those for a realistic head model that includes the ear; and 4) a hand holding the handset absorbs significant amount of antenna output power, which can be considerably decreased by modifying the geometry of the handset metal box

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:44 ,  Issue: 10 )