By Topic

Addressing Dynamic Process Changes in High Volume Plasma Etch Manufacturing by Using Multivariate Process Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Parkinson, B.R. ; TEL Technol. Center, Hopewell Junction, VA, USA ; Hyung Lee ; Funk, M. ; Prager, D.
more authors

Multivariate plasma etch modeling and control methodology are presented based on 65 and 45 nm gate production data utilizing wafer-to-wafer tool-level scatterometry. The selection of etch recipe variables for optimal control of wafer-to-wafer profile, within-wafer CD, and chamber-to-chamber CD is demonstrated and validated based on wafer-to-wafer, within wafer, and chamber matching experiments.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:23 ,  Issue: 2 )