By Topic

Adaptive Neural Network Control of a Self-Balancing Two-Wheeled Scooter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching-Chih Tsai ; Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan ; Hsu-Chih Huang ; Shui-Chun Lin

This paper presents an adaptive control using radial-basis-function neural networks (RBFNNs) for a two-wheeled self-balancing scooter. A mechatronic system structure of the scooter driven by two dc motors is briefly described, and its mathematical modeling incorporating two frictions between the wheels and the motion surface is derived. By decomposing the overall system into two subsystems (yaw motion and mobile inverted pendulum), one proposes two adaptive controllers using RBFNN to achieve self-balancing and yaw control. The performance and merit of the proposed adaptive controllers are exemplified by conducting several simulations and experiments on a two-wheeled self-balancing scooter.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 4 )