Cart (Loading....) | Create Account
Close category search window

A Study of Dynamic Modulation and Buffer Capability in Low Dispersion Photonic Crystal Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fang Long ; Key Lab. of Inf. Photonics & Opt. Commun., Beijing Univ. of Posts & Telecommun., Beijing, China ; Huiping Tian ; Yuefeng Ji

A novel method is proposed to realize compact, high-performance optical buffering application based on the polymer-infiltrated photonic crystal waveguide. By adjusting the radii of the first two rows of holes adjacent to the defect, the negligible dispersion bandwidth ranging from 2.8 nm to 13.8 nm and the corresponding constant group velocity are obtained, which are suitable for the requirement of optical buffers. Then the buffer capability and dynamic modulation of dispersion engineering waveguide are systemically studied. The simulation shows that the center wavelength shift, delay time and storage capacity increase almost linearly as the applied voltage increases. And the modulation sensitivities are about 0.386 nm/V, 0.8 ps/V and 0.37 bit/V, respectively. These results show that the proposed structure has considerable potential for optical buffering application.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 8 )

Date of Publication:

April15, 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.