Cart (Loading....) | Create Account
Close category search window
 

Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fernandez, E. ; Dep. deoptica, Farmacologia y Anatomia, Univ. de Alicante, Alicante, Spain ; Marquez, A. ; Gallego, S. ; Fuentes, R.
more authors

Holographic data storage is a new optical technology, which allows an important number of bits to be stored in a recording material. In this paper, holographic data pages were stored in a polyvinyl alcohol/acrylamide (AA) photopolymer layer, using a peristrophic multiplexing method. This material is formed of AA photopolymers, which are considered interesting materials for recording holographic memories. Moreover, a hybrid ternary modulation (HTM) was used to reduce the zero frequency of the Fourier transform of the object. A liquid crystal device was optimized to modify the object beam in order to obtain data pages with the HTM.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 5 )

Date of Publication:

March1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.