By Topic

Resource management with virtual paths in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Friesen, V.J. ; Dept. of Comput. Sci., Waterloo Univ., Ont., Canada ; Harms, J.J. ; Wong, J.W.

A virtual path connection (VPC) is a labelled path which can be used to transport a bundle of virtual channel connections (VCCs) and to manage the resources used by these connections. The virtual network is organized as a collection of VPCs which form a VPC, or logical, overlay network. If the VPCs are permanent or semi-permanent and have reserved capacity, establishing new VCCs requires simple connection admission decisions at the VPC terminators of existing VPCs. This would enable faster connection establishment since transit nodes are not involved in the connection setup. The virtual path concept also allows the possibility of segregating traffic types according to quality of service requirements. However, the extent to which VPC provisioning is able to improve network efficiency is dependent on the resource management decisions that determine the VPC topology and capacity allocations. The article surveys resource management using virtual paths in an ATM network. Of interest are techniques which modify the VPC topology and capacity assignments in order to adapt to changing traffic conditions and possible network failures. The resource management activities employed to facilitate such adaptation can be categorized by the timescale on which they operate. On the shortest timescale are strategies for dynamically making minor changes to the VPC topology or capacity assignments. On a somewhat longer timescale are strategies for making more widespread modifications to the VPC overlay network. This would be appropriate for traffic changes based on time of day and for recovering from network failures. Finally, on an even longer timescale, strategies may be employed to design a general VPC overlay network, to be used at startup or after major network upgrades. Solutions to VPC resource management for each of these timescales are discussed

Published in:

Network, IEEE  (Volume:10 ,  Issue: 5 )