By Topic

Enhancement of grid-based spatially-correlated variability modeling for improving SSTA accuracy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ninomiya, S. ; Dept. of Inf. Syst. Eng., Osaka Univ., Suita, Japan ; Hashimoto, M.

Statistical timing analysis for manufacturing variability requires modeling of spatially-correlated variation. Common grid-based modeling for spatially-correlated variability involves a trade-off between accuracy and computational cost, especially for PCA (principal component analysis). This paper proposes to spatially interpolate variation coefficients for improving accuracy instead of fining spatial grids. Experimental results show that the spatial interpolation realizes a continuous expression of spatial correlation, and reduces the maximum error of timing estimates that originates from sparse spatial grids For attaining the same accuracy, the proposed interpolation reduced CPU time for PCA by 97.7% in a test case.

Published in:

SOC Conference, 2009. SOCC 2009. IEEE International

Date of Conference:

9-11 Sept. 2009