By Topic

Transmission control in cognitive radio as a Markovian dynamic game: Structural result on randomized threshold policies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, J.W. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Krishnamurthy, V.

This paper considers an uplink time division multiple access (TDMA) cognitive radio network where multiple cognitive radios (secondary users) attempt to access a spectrum hole. We assume that each secondary user can access the channel according to a decentralized predefined access rule based on the channel quality and the transmission delay of each secondary user. By modeling secondary user block fading channel qualities as a finite state Markov chain, we formulate the transmission rate adaptation problem of each secondary user as a general-sum Markovian dynamic game with a delay constraint. Conditions are given so that the Nash equilibrium transmission policy of each secondary user is a randomized mixture of pure threshold policies. Such threshold policies can be easily implemented. We then present a stochastic approximation algorithm that can adaptively estimate the Nash equilibrium policies and track such policies for non-stationary problems where the statistics of the channel and user parameters evolve with time.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 1 )