Cart (Loading....) | Create Account
Close category search window
 

Blind adaptive MIMO receivers for space-time block-coded DS-CDMA systems in multipath channels using the constant modulus criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Lamare, R.C. ; Dept. of Electron., Univ. of York, York, UK ; Sampaio-Neto, R.

We propose blind adaptive multi-input multi-output (MIMO) linear receivers for DS-CDMA systems using multiple transmit antennas and space-time block codes (STBC) in multipath channels. A space-time code-constrained constant modulus (CCM) design criterion based on constrained optimization techniques is considered and recursive least squares (RLS) adaptive algorithms are developed for estimating the parameters of the linear receivers. A blind space-time channel estimation method for MIMO DS-CDMA systems with STBC based on a subspace approach is also proposed along with an efficient RLS algorithm. Simulations for a downlink scenario assess the proposed algorithms in several situations against existing methods.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 1 )

Date of Publication:

January 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.