By Topic

Simulation-based verification of power aware System-on-Chip designs using UPF IEEE 1801

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Christoph Trummer ; Institute for Technical Informatics, Graz University of Technology, Austria ; Christoph M. Kirchsteiger ; Christian Steger ; Reinhold Weiß
more authors

For System-on-Chips (SoCs) the most critical design constraint is power dissipation. Therefore, power aware design should be introduced at early stages of SoC design where it has the highest benefits for power reduction. This also lowers the design complexity and verification effort. Until recently, capabilities to describe and verify the power design early were inadequate which often led to late re-design. Lately, the IEEE 1801 Standard for Design and Verification of Low Power Integrated Circuits, an extension of the Unified Power Format (UPF) was approved. This work uses the new IEEE 1801 standard to describe power aware design. The power design is automatically translated into an executable hierarchy parallel to the system design. Simulation results from system and power design are used to automatically verify the SoC's power aware design against its specifications.

Published in:


Date of Conference:

16-17 Nov. 2009