By Topic

Equalization of microwave digital radio channels with a hybrid acousto-optic and digital processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. S. Anderson ; Dynetic Inc., Huntsville, AL, USA

Digital radio transmission systems use complex modulation schemes that require powerful signal processing techniques to correct channel distortions and to minimize bit-error rates (BERs). Combined analog and digital processors are investigated for minimizing the mean square error (MSE) of the radio receiver. The analog filters are implemented using acousto-optic (AO) processing since rapidly adaptable, inverse channel filters can be produced for either minimum or nonminimum phase channels. A specific architecture is identified and a laboratory system is tested to verify the ability of the processor to track and correct time-varying channels. Computer simulations are used to show that hybrid analog and digital equalization allows an increase in the modulation capacity of radio, relative to all digital equalization, while maintaining similar equipment signatures

Published in:

IEEE Transactions on Communications  (Volume:44 ,  Issue: 10 )