By Topic

Parallel divide and conquer on meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lo, V. ; Dept. of Comput. & Inf. Sci., Oregon Univ., Eugene, OR ; Rajopadhye, S.

We address the problem of mapping divide-and-conquer programs to mesh connected multicomputers with wormhole or store-and-forward routing. We propose the binomial tree as an efficient model of parallel divide-and-conquer and present two mappings of the binomial tree to the 2D mesh. Our mappings exploit regularity in the communication structure of the divide-and-conquer computation and are also sensitive to the underlying flow control scheme of the target architecture. We evaluate these mappings using new metrics which are extensions of the classical notions of dilation and contention. We introduce the notion of communication slowdown as a measure of the total communication overhead incurred by a parallel computation. We conclude that significant performance gains can be realized when the mapping is sensitive to the flow control scheme of the target architecture

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 10 )