By Topic

Self-Validated Labeling of Markov Random Fields for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Feng ; Sch. of Creative Media, City Univ. of Hong Kong, Kowloon, China ; Jiaya Jia ; Zhi-Qiang Liu

This paper addresses the problem of self-validated labeling of Markov random fields (MRFs), namely to optimize an MRF with unknown number of labels. We present graduated graph cuts (GGC), a new technique that extends the binary s-t graph cut for self-validated labeling. Specifically, we use the split-and-merge strategy to decompose the complex problem to a series of tractable subproblems. In terms of Gibbs energy minimization, a suboptimal labeling is gradually obtained based upon a set of cluster-level operations. By using different optimization structures, we propose three practical algorithms: tree-structured graph cuts (TSGC), net-structured graph cuts (NSGC), and hierarchical graph cuts (HGC). In contrast to previous methods, the proposed algorithms can automatically determine the number of labels, properly balance the labeling accuracy, spatial coherence, and the labeling cost (i.e., the number of labels), and are computationally efficient, independent to initialization, and able to converge to good local minima of the objective energy function. We apply the proposed algorithms to natural image segmentation. Experimental results show that our algorithms produce generally feasible segmentations for benchmark data sets, and outperform alternative methods in terms of robustness to noise, speed, and preservation of soft boundaries.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 10 )