By Topic

Exploration of adaptive beaconing for efficient intervehicle safety communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In the future intervehicle communication will make driving safer, easier, and more comfortable. As a cornerstone of the system, vehicles need to be aware of other vehicles in the vicinity. This cooperative awareness is achieved by beaconing, the exchange of periodic single-hop broadcast messages that include data on the status of a vehicle. While the concept of beaconing has been developed in the first phase of research on VANETs, recent studies have revealed limitations with respect to network performance. Obviously, the frequency of beacon messages directly translates into accuracy of cooperative awareness and thus traffic safety. There is an indisputable trade-off between required bandwidth and achieved accuracy. In this work we analyze this trade-off from different perspectives considering the consequences for safety applications. As a solution to the problem of overloading the channel, we propose to control the offered load by adjusting the beacon frequency dynamically to the current traffic situation while maintaining appropriate accuracy. To find an optimal adaptation, we elaborate on several options that arise when determining the beacon frequency. As a result, we propose situation-adaptive beaconing. It depends on the vehicle's own movement and the movement of surrounding vehicles, macroscopic aspects like the current vehicle density, or microscopic aspects.

Published in:

Network, IEEE  (Volume:24 ,  Issue: 1 )