By Topic

SmartReflex Power and Performance Management Technologies for 90 nm, 65 nm, and 45 nm Mobile Application Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Gordon Gammie ; Texas Instruments , Dallas, United States ; Alice Wang ; Hugh Mair ; Rolf Lagerquist
more authors

In the last couple of decades, handheld wireless devices such as cell phones have become one of the most prolific electronic devices in history. With this has come an exploding demand for performance and features that cover almost every aspect of our digital multimedia interconnected lives including 3-D gaming, still and video cameras, WAN, Bluetooth, high-speed data connections, and so on. As ever increasing features continue to be integrated into these products, there is an ongoing need to develop innovative ways to reduce power consumption and extend battery life. Only through continual process and circuit cooptimization are we able to reap the benefits of technology scaling required to meet the feature and performance demands in the face of increasing process variations and exponentially increasing leakage currents. As a result, SmartReflex power and performance technologies have been developed and applied to 90 nm, 65 nm, and 45 nm system-on-chip (SoC), to achieve optimal power and performance. SmartReflex technologies consist of two major components to optimize SoC power and performance: static and dynamic techniques. Static techniques like power-gating, retention and off-mode are used to lower leakage and allow for extended battery lifetimes for standby times. Dynamic techniques such as dynamic power switching, adaptive voltage scaling, dynamic voltage/frequency scaling with split-rail memories, and adaptive body-biasing address active power and performance challenges. These techniques enable SoC solutions with the performance of the latest process technology and provide the user with advanced multimedia features with orders of magnitude of power reduction.

Published in:

Proceedings of the IEEE  (Volume:98 ,  Issue: 2 )