Cart (Loading....) | Create Account
Close category search window
 

Modeling the Overshooting Effect for CMOS Inverter Delay Analysis in Nanometer Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhangcai Huang ; Fukuoka Ind., Sci. & Technol. Found., Fukuoka, Japan ; Kurokawa, A. ; Hashimoto, M. ; Sato, T.
more authors

With the scaling of complementary metal-oxide-semiconductor (CMOS) technology into the nanometer regime, the overshooting effect due to the input-to-output coupling capacitance has more significant influence on CMOS gate analysis, especially on CMOS gate static timing analysis. In this paper, the overshooting effect is modeled for CMOS inverter delay analysis in nanometer technologies. The results produced by the proposed model are close to simulation program with integrated circuit emphasis (SPICE). Moreover, the influence of the overshooting effect on CMOS inverter analysis is discussed. An analytical model is presented to calculate the CMOS inverter delay time based on the proposed overshooting effect model, which is verified to be in good agreement with SPICE results. Furthermore, the proposed model is used to improve the accuracy of the switch-resistor model for approximating the inverter output waveform.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.