By Topic

CMOS Phased Array Transceiver Technology for 60 GHz Wireless Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mohammad Fakharzadeh ; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada ; Mohammad-Reza Nezhad-Ahmadi ; Behzad Biglarbegian ; Javad Ahmadi-Shokouh
more authors

Based on the indoor radio-wave propagation analysis, and the fundamental limits of CMOS technology it is shown that phased array technology is the ultimate solution for the radio and physical layer of the millimeter wave multi-Gb/s wireless networks. A low-cost, single-receiver array architecture with RF phase-shifting is proposed and design, analysis and measurements of its key components are presented. A high-gain, two-stage, low noise amplifier in 90 nm-CMOS technology with more than 20 dB gain over the 60 GHz spectrum is designed. Furthermore, a broadband analog phase shifter with a linear phase and low insertion loss variation is designed, and its measured characteristics are presented. Moreover, two novel beamforming techniques for millimeter wave phased array receivers are developed in this paper. The performance of these methods for line-of-sight and multipath signal propagation conditions is studied. It is shown that one of the proposed beamforming methods has an excess gain of up to 14 dB when the line of sight link is obstructed by a human.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 4 )