By Topic

Graph Based Representations of Density Distribution and Distances for Self-Organizing Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tasdemir, K. ; Dept. of Comput. Eng., Yasar Univ., Izmir, Turkey

The self-organizing map (SOM) is a powerful method for manifold learning because of producing a 2-D spatially ordered quantization of a higher dimensional data space on a rigid lattice and adaptively determining optimal approximation of the (unknown) density distribution of the data. However, a postprocessing visualization scheme is often required to capture the data manifold. A recent visualization scheme CONNvis, which is shown effective for clustering, uses a topology representing graph that shows detailed local data distribution within receptive fields. This brief proposes that this graph representation can be adapted to show local distances. The proposed graphs of local density and local distances provide tools to analyze the correlation between these two information and to merge them in various ways to achieve an advanced visualization. The brief also gives comparisons for several synthetic data sets.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 3 )