Cart (Loading....) | Create Account
Close category search window

Hermite Interpolation of Implicit Surfaces with Radial Basis Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Macedo, I. ; Vision & Graphics Lab., Inst. Nac. de Mat. Pura e Aplic. (IMPA), Rio de Janeiro, Brazil ; Gois, J.P. ; Velho, L.

We present the Hermite radial basis function (HRBF) implicits method to compute a global implicit function which interpolates scattered multivariate Hermite data (unstructured points and their corresponding normals). Differently from previous radial basis functions (RBF) approaches, HRBF implicits do not depend on offset points to ensure existence and uniqueness of its interpolant. Intrinsic properties of this method allow the computation of implicit surfaces rich in details, with irregularly spaced points even in the presence of close sheets. Comparisons to previous works show the effectiveness of our approach. Further, the theoretical background of HRBF implicits relies on results from generalized interpolation theory with RBFs, making possible powerful new variants of this method and establishing connections with previous efforts based on statistical learning theory.

Published in:

Computer Graphics and Image Processing (SIBGRAPI), 2009 XXII Brazilian Symposium on

Date of Conference:

11-15 Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.