By Topic

Learning Discriminative Appearance-Based Models Using Partial Least Squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schwartz, W.R. ; Univ. of Maryland, College Park, MD, USA ; Davis, L.S.

Appearance information is essential for applications such as tracking and people recognition. One of the main problems of using appearance-based discriminative models is the ambiguities among classes when the number of persons being considered increases. To reduce the amount of ambiguity, we propose the use of a rich set of feature descriptors based on color, textures and edges. Another issue regarding appearance modeling is the limited number of training samples available for each appearance. The discriminative models are created using a powerful statistical tool called partial least squares (PLS), responsible for weighting the features according to their discriminative power for each different appearance. The experimental results, based on appearance-based person recognition, demonstrate that the use of an enriched feature set analyzed by PLS reduces the ambiguity among different appearances and provides higher recognition rates when compared to other machine learning techniques.

Published in:

Computer Graphics and Image Processing (SIBGRAPI), 2009 XXII Brazilian Symposium on

Date of Conference:

11-15 Oct. 2009