By Topic

Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Linares-Barranco, B. ; Inst. de Microelectromca de Sevilla, CSIC, Sevilla, Spain ; Serrano-Gotarredona, T.

In this paper we show that spike-time-dependent-plasticity (STDP), a powerful learning paradigm for spiking neural systems, can be implemented using a crossbar memristive array combined with neurons that asynchronously generate spikes of a given shape. Such spikes need to be sent back through the neurons input terminal. The shape of the spikes turns out to be very similar to the neural spikes observed in biology for real neurons. The STDP learning function obtained by combining such neurons with memristors is exactly that of the STDP learning function obtained from neurophysiological experiments on real synapses. Using this result, we propose memristive crossbar architectures capable of performing asynchronous STDP learning.

Published in:

Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on

Date of Conference:

26-30 July 2009