By Topic

Feature selection on chronic pain self reporting data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yan Huang ; Univ. of Ulster, Newtownabbey, UK ; Huiru Zheng ; Nugent, C. ; McCullagh, P.
more authors

Chronic pain is a common long-term condition that changes patients' physical and emotional functioning. Currently, the integrated biopsychosoical approach is the mainstay treatment for patients with chronic pain. Self reporting (the use of questionnaires) is one of the most common methods to evaluate treatment outcome. Nevertheless, a large number of questions (for example 329 questions in this study) may be required and as such may be viewed as not being convenient for patients to complete. This paper has applied the theory of information gain to rank the questions in addition to investigating important factors related to the treatment outcome. Analysis within the study ranked the questions from 1 to 329 based on information gain (highest to lowest). Results showed that questions related to chronic pain coping strategies and value-based actions had high information gain. Four supervised learning classifiers were used to investigate the correlations between feature numbers and classification accuracy. The results showed classifier that a multi-layer perceptron classifier obtained the highest classification accuracy (96.05%) on an optimized subset which consisted of 133 questions.

Published in:

Information Technology and Applications in Biomedicine, 2009. ITAB 2009. 9th International Conference on

Date of Conference:

4-7 Nov. 2009