By Topic

DS-CDMA synchronization in time-varying fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Strom, E.G. ; Dept. of Signals, Sensors & Syst., R. Inst. of Technol., Stockholm, Sweden ; Parkvall, S. ; Miller, S.L. ; Ottersten, B.E.

The problem of estimating propagation delays of the transmitted signals in a direct-sequence code-division multiple-access (DS-CDMA) system operating over fading channels is considered. Even though this study is limited to the case when the propagation delays are fixed during the observation interval, the channel gain and phase are allowed to vary in time. Special attention is given to the near-far problem which is catastrophic for the standard acquisition algorithm. An estimator based on subspace identification techniques is proposed, and the Cramer-Rao bound, which serves as an optimality criterion, is derived. The Cramer-Rao bound is shown to be independent of the near-far problem, which implies that there is no fundamental reason for propagation delay estimators to be near-far limited. Furthermore, the proposed algorithm is experimentally shown to be robust against the near-far problem

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:14 ,  Issue: 8 )