By Topic

A hybrid spreading/despreading function with good SNR performance for band-limited DS-CDMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li Yu ; Dept. of Electr. Eng., Saskatchewan Univ., Saskatoon, Sask., Canada ; Salt, J.E.

Code-division multiple-access (CDMA) implemented with direct-sequence spread spectrum (DS/SS) signaling is a promising multiplexing technique for cellular telecommunications services. The efficiency of a direct-sequence spread-spectrum code-division multiple-access (DS-CDMA) system depends heavily on the shape of the spectrum of the spread signal. Maximum efficiency is obtained with an ideal brick-wall bandpass spectrum. There are two approaches toward achieving such a spectrum. One is to use a simple spreader that produces a broad spectrum and then follow it with a precise, high order filter to band limit the spectrum. A second approach, which is the approach taken in this paper, is to use a spreader that produces a spectrum close to the ideal spectrum and then employ a simple filter to control the out-of-band power. The proposed spreader/despreader is based on a simple hybrid function and can be easily implemented. An analysis provides a compact expression for the signal-to-noise ratio (SNR) of a RAKE receiver. The expression includes the effects of baseband, intermediate frequency (IF) and RF filtering as well as the effects of the spectral densities of the spreading/despreading functions. The analysis shows that the proposed spreader/despreader yields superior performance over a conventional pseudo noise (PN) spreading/despreading mechanism

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:14 ,  Issue: 8 )