By Topic

On optimal feature selection using modified Harmony search for power quality disturbance classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roy, G.G. ; Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Kolkata, India ; Panigrahi, B.K. ; Chakraborty, P. ; Mallick, M.K.

This paper presents a novel technique for power quality disturbance classification. Wavelet transform (WT) has been used to extract some useful features of the power system disturbance signal and discrete harmony search with modified differential mutation operator (DHS_MD) have been used for feature dimension reduction in order to achieve high classification accuracy. Next, a probabilistic neural network (PNN) has been trained using the optimal feature set selected by DHS_MD for automatic PQ disturbance classification. Considering ten types of PQ disturbances, simulations have been carried out which show that the combination of feature extraction by WT followed by feature reduction using DHS_MD increases the testing accuracy of PNN while classifying PQ signals.

Published in:

Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on

Date of Conference:

9-11 Dec. 2009