By Topic

Development of online handwriting recognition system: A case study with handwritten Bangla character

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bandyopadhyay, A. ; C-DAC, Kolkata, Kolkata, India ; Chakraborty, Basabi

Developing efficient handwriting recognition systems that are fast and highly reliable is a challenging problem. This work represents the development of an online handwriting recognition system for Bangla script, widely used in eastern India and Bangladesh. In our approach, an online handwritten character/cluster is characterized by structure or shape based representation of a stroke in which a stroke is represented as a string of shape features. Using this string representation, an unknown stroke is identified by comparing it with a database of strokes using DTW (dynamic time warping) technique. Identifying all the component strokes recognizes a full character. A recognition experiment has been conducted with a total of 495 classes on 20,873 data samples and 10 people as data contributors yielding 97.33% recognition rate with 2.18% misrecognition rate and 0.5% rejection rate.

Published in:

Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on

Date of Conference:

9-11 Dec. 2009