By Topic

Implementation of Fuel Cell Emulation on DSP and dSPACE Controllers in the Design of Power Electronic Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abraham Gebregergis ; Innovation Center, Delphi Steering Saginaw, Saginaw, MI, USA ; Pragasen Pillay

This paper introduces a fuel cell (FC) emulator based on experimentally validated dynamic solid oxide FC (SOFC) and proton exchange membrane FC (PEMFC) models for power electronics converter design and test, and fault diagnosis and mitigation. The FC emulation developed includes both the steady-state and transient responses of an FC. A Matlab/Simulink environment is used to implement the FC model, convert and compile it into a C-program and build into real-time control, which is finally programmed into a dSPACE and/or DSP controller for prototype testing and design and field testing. The output of the controller is sent to a linear power amplifier (power converter) that drives a power converter or a load. Experimental test was carried out to observe the steady-state and transient responses of the FC emulator. Both implementation methods show very good results when compared with the experimental data.

Published in:

IEEE Transactions on Industry Applications  (Volume:46 ,  Issue: 1 )