Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Double Coil-Less Fluxgate in Bridge Configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Butta, M. ; Fac. of Electr. Eng., Czech Tech. Univ. in Prague, Prague, Czech Republic ; Ripka, P. ; Navarrete, J.P. ; Vazquez, M.

In this paper, a new method for excitation of coil-less fluxgate is presented. The purpose of this method is to reduce the spurious component of the output voltage, allowing us to increase the amplification. The method is based on the employment of two coil-less fluxgates in a double bridge, which injects pulsing current in opposite direction in each wire. By taking the difference of the voltages on the two wires, we suppress the component of the voltages, which does not change under application of external measured field. The sensitive axes are in opposite direction, so the wire feels opposite field. As a result, we will obtain an output voltage with low peak value, including only the component of the voltage that changes when we apply external field. Finally, we propose an improved version of the double bridge to allow the employment of two sensing elements with difference characteristics. This is obtained by optimizing the suppression of the spurious voltages and, at the same time, setting independently chosen values of exciting current for each wire.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 2 )