By Topic

Spontaneous Domain Wall Motion at Zero External Magnetic Field in Ferromagnetic Nanowire

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Djuhana, Dede ; Dept. of Phys., Chungbuk Nat. Univ., Cheongju, South Korea ; Hong-Guang Piao ; Je-Ho Shim ; Lee, Sang-Hyuk
more authors

We have explored a spontaneous domain wall motion in ferromagnetic nanowire at zero external magnetic field by means of micromagnetic simulation. Very interestingly, even with no external magnetic field, a spontaneous domain wall motion is observed with a speed about few tens of m/s, which is significant and not negligible in analysis of the domain wall dynamics on nanowires. The spontaneous zero-field wall motion is explained based on the minimization condition of the magnetostatic energy, preferring to have a wire magnetically saturated. Average speed of the spontaneous wall motion is found to increase as the wire thickness increases.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 2 )