By Topic

Auditory Spectrum-Based Pitched Instrument Onset Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Emmanouil Benetos ; Inst. of Comput. Sci., Found. for Res. & Technol.-Hellas (FORTH), Heraklion, Greece ; Yannis Stylianou

In this paper, a method for onset detection of music signals using auditory spectra is proposed. The auditory spectrogram provides a time-frequency representation that employs a sound processing model resembling the human auditory system. Recent work on onset detection employs DFT-based features describing spectral energy and phase differences, as well as pitch-based features. These features are often combined for maximizing detection performance. Here, the spectral flux and phase slope features are derived in the auditory framework and a novel fundamental frequency estimation algorithm based on auditory spectra is introduced. An onset detection algorithm is proposed, which processes and combines the aforementioned features at the decision level. Experiments are conducted on a dataset covering 11 pitched instrument types, consisting of 1829 onsets in total. Results indicate that auditory representations outperform various state-of-the-art approaches, with the onset detection algorithm reaching an F-measure of 82.6%.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:18 ,  Issue: 8 )