By Topic

Extended Active Interference Cancellation for Sidelobe Suppression in Cognitive Radio OFDM Systems With Cyclic Prefix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daiming Qu ; Wuhan National Laboratory for Optoelectronics, Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan, China ; Zhiqiang Wang ; Tao Jiang

The sidelobe of noncontiguous orthogonal frequency-division multiplexing (OFDM) signals is required to be deeply suppressed in the licensed user's band in cognitive radio (CR) systems. To this end, we propose a novel method of adding extended active interference cancellation (EAIC) signals to suppress sidelobes and to shape the spectrum of the CR-OFDM signal with a cyclic prefix (CP). For simplicity, we called the proposed scheme EAIC-CP. The key idea of the proposed EAIC-CP is to employ some cancellation signals consisting of tones spaced closer than the interval of OFDM subcarriers to cancel the sidelobes of OFDM signals. Moreover, we derive the optimal cancellation signals to minimize the total sidelobe power subject to a self-interference constraint. Numerical results show that, when the guard bandwidth is equal to one OFDM subcarrier interval, the EAIC-CP scheme offers more than a 45.0-dB sidelobe suppression with unnoticeable signal-to-noise ratio (SNR) loss at a symbol error rate (SER) from 10-2 to 10-3 for 64 quadratic-amplitude modulation (64QAM). Moreover, the EAIC-CP scheme can achieve high spectrum efficiency with low implementation complexity.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:59 ,  Issue: 4 )