By Topic

A Robust Fuzzy Local Information C-Means Clustering Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krinidis, S. ; Dept. of Inf. Manage., Technol. Inst. of Kavala, Kavala, Greece ; Chatzis, V.

This paper presents a variation of fuzzy c-means (FCM) algorithm that provides image clustering. The proposed algorithm incorporates the local spatial information and gray level information in a novel fuzzy way. The new algorithm is called fuzzy local information C-Means (FLICM). FLICM can overcome the disadvantages of the known fuzzy c-means algorithms and at the same time enhances the clustering performance. The major characteristic of FLICM is the use of a fuzzy local (both spatial and gray level) similarity measure, aiming to guarantee noise insensitiveness and image detail preservation. Furthermore, the proposed algorithm is fully free of the empirically adjusted parameters (a, ??g, ??s, etc.) incorporated into all other fuzzy c-means algorithms proposed in the literature. Experiments performed on synthetic and real-world images show that FLICM algorithm is effective and efficient, providing robustness to noisy images.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 5 )