By Topic

Design and Field Experimentation of an Energy-Efficient Architecture for DTN Throwboxes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banerjee, N. ; Dept. of Comput. Sci., Univ. of Massachusetts, Amherst, MA, USA ; Corner, M.D. ; Levine, B.N.

Disruption-tolerant networks (DTNs) rely on intermittent contacts between mobile nodes to deliver packets using a store-carry-and-forward paradigm. We earlier proposed the use of throwbox nodes, which are stationary, battery-powered nodes with storage and processing, to enhance the capacity of DTNs. However, the use of throwboxes without efficient power management is minimally effective. If the nodes are too liberal with their energy consumption, they will fail prematurely. However, if they are too conservative, they may miss important transfer opportunities, hence increasing lifetime without improving performance. In this paper, we present a hardware and software architecture for energy-efficient throwboxes in DTNs. We propose a hardware platform that uses a multitiered, multiradio, scalable, solar-powered platform. The throwbox employs an approximate heuristic for solving the NP-hard problem of meeting an average power constraint while maximizing the number of bytes forwarded by the throwbox. We built and deployed prototype throwboxes in UMass DieselNet, a bus-based DTN testbed. Through extensive trace-driven simulations and prototype deployment, we show that a single throwbox with a 270-cm2 solar panel can run perpetually while improving packet delivery by 37% and reducing message delivery latency by at least 10% in the network.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:18 ,  Issue: 2 )