Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Robust Stability Analysis for Stochastic Neural Networks With Time-Varying Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wu-Hua Chen ; Coll. of Math. & Inf. Sci., Guangxi Univ., Nanning, China ; Wei Xing Zheng

This brief investigates the problem of mean square exponential stability of uncertain stochastic delayed neural networks (DNNs) with time-varying delay. A novel Lyapunov functional is introduced with the idea of the discretized Lyapunov-Krasovskii functional (LKF) method. Then, a new delay-dependent mean square exponential stability criterion is derived by applying the free-weighting matrix technique and by equivalently eliminating time-varying delay through the idea of convex combination. Numerical examples illustrate the effectiveness of the proposed method and the improvement over some existing methods.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 3 )