By Topic

Single crystal diamond tips for scanning probe microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Obraztsov, Alexander N. ; Department of Physics, Moscow State University, Moscow 119991, Russia ; Kopylov, Petr G. ; Loginov, Boris A. ; Dolganov, Mathew A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Single crystal diamond tips with perfect pyramidal geometry were obtained by a combination of chemical vapor deposition and selective oxidation of polycrystalline films. The parameters of the deposition process were chosen to provide growth of a textured film consisting of micrometer sized diamond crystallites embedded into nanodiamond ballas-like material. The heating of the film in an air environment was used for selective oxidation of the nanodiamond component. The films obtained contain free standing pyramidal single crystal diamond tips oriented by their apexes to the substrate surface. The tips were used for the fabrication of atomic force microscopy probes and their evaluation in comparison to common silicon probes.

Published in:

Review of Scientific Instruments  (Volume:81 ,  Issue: 1 )